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Abstract

In this report, an overview of information fusion techniques for dependent and independent
sources, specifically for biometric applications, is provided. The information fusion
architecture is presented for both dependent and independent sources addressing in detail the
various fusion techniques at four different levels namely: raw data or signal level, feature
level, decision level and multi-level integrated fusion. Furthermore, the report addresses the
guestion of whether independent biometric sources can be fused to provide multi-modal
biometric system with enhanced performance. The report shows that even when the sources
are independent, the performance of a multi-modal biometric system can be better than that of
a biometric system based on single source. The performance is measured in terms of total
false accept rate (FAR) and false rejection rate (FRR). The conditions for achieving an
improved performance for the decision level fusion using AND, OR and majority voting are
derived theoretically and confirmed through computer simulations.

Keywords: information fusion, biometrics, dependent, independent, signal fusion, feature
fusion, decision fusion.
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Executive summary

Information fusion utilizes a combination of different sources of information, either to
generate one representational format, or to reach a decision. Information can be from both
dependent and independent sources. In this report, a literature review of information fusion
techniques, in particular for biometric information fusion, is given. We classify fusion into
two main categories: fusion of dependent sources and fusion of independent sources. Both
categories of fusion can be carried out in four different levels: raw data level, feature level,
decision level and multi-level integrated fusion. For the dependent sources, raw data level
fusion is widely applied particularly in target-tracking, remote sensing image fusion,
navigation, etc. However, it is not suitable for independent biometric sources since the
biometric traits contain different signal formats. Feature level fusion is applicable to both
independent and dependent sources. Developed methods include: nonparametric techniques
(nearest-neighbor rule, Parzen window and metric classifier), soft computing techniques
(MLP, RBF, SVM, GA, and fuzzy logic), unsupervised learning and clustering techniques and
stochastic techniques (Bayesian classifier, HMM and EM ML). Since features from different
sources are concatenated resulting in a vector with large dimensions, the problem of high
dimensionality must be addressed. Features can also be used in an individual classifier, which
outputs matching scores. In this scheme, rule based methods (majority voting, aggregation
rules, Borda count) are in the mainstream while others such as statistical decision (Bayesian
decision, DM), information based (expert system, fuzzy sets), and learning based (SVM,
MLP, RBF) methods have also been proposed. Since in the case of decision level fusion,
individual classifiers output a hard decision it is favorable to the independent sources while
some literature exist that formulates decision level fusion for dependent sources as well. The
techniques here include rule-based (majority voting, AND/OR, PROD/SUM, etc), machine
learning and NN, linear classifier, statistical decision theory (ML, Bayesian, DM), fuzzy k-
means, logistic regression etc. Among them, the SVM is reported to have a better
performance while the rule-based algorithms are the simplest and easiest to analyze.

Preliminary theoretical analysis is developed here using decision level fusion to determine
whether fusion of independent biometric sources could improve the overall identification
performance. The performance is evaluated by two common indices: false acceptance rate
(FAR) and false rejection rate (FRR) as well as the total error. When two independent
biometric traits are used, the performance of the integrated system based on the AND/OR
fusion rules is proved to give better performance in terms of total error than that of an
individual biometrics under certain condition. FAR and FRR decreases with number of
biometric sources. However, the FAR and FRR cannot be simultaneously reduced. To this
extent, we also investigate the choice of majority voting rule for three independent source
fusions in this report. Fusion of independent sources is found to produce improved
performance than those of AND/OR and individual sources under certain conditions.
Computer experiments are carried out to confirm the theoretical derivation and to illustrate
that that fusion of independent sources is indeed possible and results in a better overall
performance for biometric identification.

Li, W., Huang, D., Leung, H. 2005. Fusion of Dependent and Independent Biometric
Information Sources. DRDC Ottawa CR 2005-052. University of Calgary.
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1. Introduction

Information fusion is usually considered to be combining various sources of information, either to
generate one representational format, or to reach a decision. The motivations for using
information fusion include: (1) Utilizing multi-sensor fusion to increase the estimation accuracy
of target-tracking [1-4]; (2) Utilizing complementary information to reduce the measurement
errors [5-7]; (3) Utilizing multiple classifier fusion to increase the correct classification rates [5-
16]; (4) Reducing the cost of implementation possibly by using several cheap sensors rather than
one expensive sensor.

For the purpose of this study, we divide information fusion into two categories: dependent and
independent source fusion. Fusion under both categories can be carried out at four different
levels: raw data-level fusion [22-28], feature-level fusion [29-57], decision-level fusion [58-73],
and multi-level integrated fusion [74-77]. Information fusion has a wide range of applications
including (1) in defense systems for target detection, identification, surveillance, tracking, and
threat assessment; (2) in geoscience and Geomatics for vehicle localization and navigation,
segmentation and classification of remote sensing images; (3) in robotics and intelligent vehicles
that require identification of environments and navigation; (4) in medicine where information
fusion is used for diagnosis and modeling of the human body, classification of different tissues,
and 3D imaging; (5) in industrial engineering.

Multi-modal biometric system is a relatively new application of information fusion while
individual biometrics has been used for a fairly long time. For example, fingerprint has been
widely used by police for person verification and identification. To increase the reliability,
biometric fusion especially multi-modal biometric fusion has drawn a lot of attention recently.
Common biometrics include fingerprint [17], face [18], hand geometry, finger geometry, iris,
retina, signature, voice, gait, smell, keystroke, ECG, etc [20, 21]. While unimodal biometrics uses
the fusion of multiple measurements, it can be considered as the fusion of dependent sources. In
the case of multi-modal biometric fusion such as fingerprint and face, the information fusion is
performed over independent sources since the two sources hardly have any correlation in the
statistical sense. Although many unimodal and multi-modal biometric fusion techniques have
been proposed in the literature, theoretical analysis of these fusion methods has not been
addressed yet. In particular, very few published papers are found that have rigorous results on
multi-modal biometrics [81-83].

There are two main objectives of this report. First, an overview of information fusion techniques
for dependent and independent sources, especially for the biometrics applications will be given.
Various fusion techniques for dependent and independent sources are reviewed and briefly
explained in the report. Second, we will address the question of whether independent biometric
sources can be fused to provide a multi-modal biometric system with enhanced performance. The
rest of this report is organized as follows. Section 2 introduces the architecture of information
fusion. Dependent and independent sources based information fusion techniques are overviewed
in Section 3 and Section 4 respectively. Section 5 presents the theoretical analysis of decision-
level fusion. Simulation results are presented in Section 6. Finally, conclusions are drawn in
Section 7.

DRDC Ottawa CR 2005-052 1



2. The Structure of Information Fusion

2.1 Comparison of fusion, integration, and classification

Before discussing the structure of information fusion, we first compare the concepts of fusion,
integration, and classification. Fusion and classification are compared in Figure 1. There are many
kinds of information fusion applications such as multi-sensor fusion based target-tracking,
navigation, image fusion, and classifier fusion. Classification can be divided into two categories:
non-fusion based classifier and fusion based classifier. For classification problems, there is a
common part for fusion and classification, i. e, classifier fusion. Classifier fusion is also called
classifier combination by some researchers.

Classifier Classification

fusion

Figure 1. Relationship between fusion and classification problems

There is no consistent definition for multi-sensor integration in the literature. One definition is
given in [4]. Multi-sensor fusion is one component of multi-sensor integration. Besides multi-
sensor fusion, multi-sensor integration also includes sensor registration, sensor modeling, and
other functional components.

2.2 Classification of information fusion techniques

According to the relationship of the sources to be fused, information fusion can be divided into
two categories: dependent sources based and independent sources based. Each category can be
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further divided into four subcategories: raw sensor measurement level (sensor-level), feature-
level, decision-level, and multi-level integrated fusion as shown in Figures 2.

Information fusion

Dependent sources Independent sources
Sensor- Feature- Decision- Sensor- Feature- Decision-
level level level level level level

Figure 2. Classification of information fusion techniques

The structure of information fusion is shown in Figure 3. In the raw data-level fusion, the raw
data from multiple sensors are combined directly. For example, multiple remote sensing images
are fused together to produce one single image by averaging the intensities of multiple images.
Random measurement noise of fingerprint images can be reduced by combining the raw images.
After raw data fusion, feature is then extracted from the fused data by feature extraction module
(FEM), and finally processed by the matching module (MM) and decision module (DM).

The second type is feature-based. There are two kinds of feature-based information fusion
approaches. The first is feature concatenation. The feature vectors from multiple sensors are
concatenated to form a new feature vector with a larger dimension. The concatenated feature
vector is then input into the matching module and decision module. The second is called score-
level fusion or classifier fusion by some researchers. The individual feature vectors from each
sensor are first input into their own feature matching modules (FMM). Each FMM provides a
matching score indicating the proximity of the feature vector with the template vector. These
scores are finally combined to assert the veracity of the claimed identity.

The third type is decision-based. For each sensor, there is a decision making module that
classifies its own extracted feature vector into two classes — accept or reject. The decision results
(accept/reject) from multiple sensors can be fused finally by some methods such as the majority
voting scheme.

DRDC Ottawa CR 2005-052 3
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Figure 3. Different levels of information fusion (FM: fusion module, MM: matching module, DM: decision

module)
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Figure 4. The multi-level integrated fusion structure

Some researchers have proposed multi-level integrated schemes for information fusion. Three-
level integrated information fusion for classification problems is shown in Figure 4. One classifier
utilizes the raw data from multiple sensors directly for classification. Another classifier utilizes
the features from multiple sensors for classification. The outputs from raw data-level and feature-
level fusion are then input into the decision fusion module to make a final decision — accept or

reject.
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3. Information Fusion for Dependent Sources

3.1 Raw data level

Different applications require different levels of information fusion. Raw data-level fusion has
been widely applied for multi-sensor fusion in target-tracking, remote sensing image fusion,
medical image fusion, GPS/INS navigation, etc. Although raw data-level fusion can also applied
to biometric fusion, it is a less popular method compared with feature-level and decision-level
fusions. In this section, raw data-level fusion techniques for non-biometric applications are
reviewed. Then biometric fusion techniques are introduced.

Compared with biometric fusion, multi-sensor fusion has been employed for many applications
including the most popular target-tracking application. Many multi-sensor fusion based target-
tracking methods have been elaborated in [3]. The most widely used one among them is the
extended Kalman filter (EKF) method, which utilizes the raw measurements of multiple sensors
to estimate the states of the target. The second important application of non-biometric fusion is
navigation. A comprehensive review of various methods to fuse GPS and INS sensors was given
in [22]. The fusion techniques were divided into three categories as: (1) Probabilistic model; (2)
Least-squares techniques: EKF, weighted EKF, fuzzy EKF, adaptive EKF [24], and optimal
theory; (3) Intelligent fusion: fuzzy logic [26], neural network [23], and genetic algorithms. An
optimal nonlinear filtering to integrate GPS and INS sensors was utilized in [25], while a
constrained unscented Kalman filter (UKF) was used in [27] to fuse GPS, INS, and digital map
information for vehicle localization. An UKF method to register and fuse dissimilar sensors was
proposed in [28] for cooperative driving application. Although multiple dissimilar sensors have
been fused for tracking and navigation applications, the measurements are based on the same
source and hence they can be considered as dependent sources based fusion. Some dynamic
modeling methods, such as gait recognition, have been proposed for biometrics and hence EKF
and UKF based methods can be used for biometric fusion.

A biometric system is essentially a pattern-recognition system that recognizes a person based on a
feature vector derived from specific physiological or behavior characteristic that the person
possesses [13]. Biometric system can be operated in two modes: verification and identification.
The commonly used biometrics include fingerprint, face, hand geometry, finger geometry, iris,
voice, palmprint, DNA, ECG, signature, etc. The comparison of various biometric techniques is
given in [13] and is presented in Table 1. Since, each biometric technique has its own limitations
and advantages, multi-modal biometric fusion for improved performance is gaining popularity. A
comprehensive overview of different multi-modal biometric fusion techniques is given in [12-16].
Raw data fusion can be used for unimodal biometric fusion. For example, multiple fingerprint
images can be obtained from different sensors. Averaging of these fingerprint images can reduce
the random measurement noise.

6 DRDC Ottawa CR 2005-052



Table 1. Comparison of various biometric technologies [2]

- g . z m - =

Biometrie E =z z T=.' ; = ¢
characteristic = g = < S = £
Facial thermogram H H L H M H L
Hand vein M M M M M M L
Caait M L L H L H M
Ikevsiroke L. L L M L. M M
Odor H H H L L M L
Ear M M H M M H M
Hand geometry M M M H M M M
Fingerprint M H H M H M M
Face H L M H L. H H
Retina H H M L H L L
Iris H H H M H L. L
Palmprint M H H M H M M
Voice M L L M L. H H
Sienature L L L H L H H
DNA H H H L H L. L

Legend: H — High M — Medium L — Low

3.2 Feature-Level

Feature-level fusion is the second category of information fusion. Based on different combination
of features, we can divide it into two schemes as:

1. Features from multiple sensors are concatenated to form a new feature vector with larger
dimension. The concatenated feature vector is input into a feature matching module and
decision module for decision making.

2. Each feature vector from individual sensor is input into a feature matching module first.
The outputs (i.e., matching scores) of the feature matching modules are fused through
some methods. Feature-level fusion has been widely used for biometric fusion and target
identification. We mainly discuss the biometric fusion problem here.

3.2.1 Fusion at the feature extraction level

The data obtained from each sensor and the same biometrics is used to compute a feature vector.
Feature vectors from different sensors are concatenated together to form a single new feature
vector. PCA and LCA may be required to reduce the dimension of the concatenated feature vector
before input into a classifier. Target recognition and biometric verification and identification

DRDC Ottawa CR 2005-052 7




problems can be considered as a classification problem. The following classifiers can be used
based on the concatenated feature vector [29]:

Nonparametric techniques:
0 Nearest-Neighbor rule, k-Nearest-Neighbor rule, Parzen window, Metrics
classifier
Soft computing techniques:
0 MLP, Recurrent NN, RBF, SVM, Probabilistic NN, Fuzzy NN, ANFIS, GA
Stochastic methods:
0 Bayesian classifier, Maximum likelihood, Component analysis, Expectation-
maximization, Hidden Markov Model
Non-metric based methods:
o Decision trees, CART (classification and regression trees), Recognition with
strings, Grammatical methods, Rule-based methods
Unsupervised learning and clustering:
0 FCM, Unsupervised Bayesian classifier, Graph-theoretic methods.

Compared to the classifier fusion level, concatenated feature scheme is less popular. We found
only two references that employ this approach to multimodal biometric fusion for independent
sources and no reference was found for dependent sources based biometrics fusion.

3.2.2 Classifier fusion level

Classifier fusion and decision fusion are two of the most popular schemes for pattern recognition
problems such as target classification in military applications and biometric verification and
identification. Dependent sources based classifier fusion techniques can be categorized as:

Rule based algorithms:
0 Majority voting [9, 31, 33]
0 Aggregation rules: minimum, maximum, averaging (simple averaging, optimal
averaging [31], product [34], logistic rule [38], Borda count [9, 35]
Statistical decision based algorithms:
0 Bayesian estimation [4]
o0 Dempster-Shafer (DS) evidential reasoning [9]
0 Non-parametric density estimation [9]
Information based algorithms:
0 Expert systems [34]
o Combination by fuzzy integral [3]
0 Fuzzy sets and possibility theory [36]
Learning-based fusion:
0 SVM, feed forward neural network, MLP, RBF [9]
Others:
0 Linear regression [33]
o Logistic transform [9, 37].

A Bayesian frame and DS theory was used in [31] to fuse Bayesian classifier, k-NN, and
distance-based classifiers for handwriting recognition. Using some individual classifier,
handwriting words were first recognized. Then the scores of the individual classifiers were

DRDC Ottawa CR 2005-052



combined by the Bayesian and DS methods. Their experiments showed that the correct
recognition rates could be improved by about 5% compared with the individual classifiers. A
method for fusing multiple instances of biometric data to improve the performance of a personal
verification system was proposed in [33]. The fusion problem was formulated in the framework of
Bayesian estimation theory. Experimental studies on the M2VTS database [32] showed that a
reduction in error rates is up to about 40%. Four combination strategies are [32]:

Averaging

A 1 R

P(w;[x) == P(w;|x) (1)

R4S

Max rule

IS(WJ-|X) =max ", P(w;|x) (2)
Min rule

|3(Wj|x)= min®, P(w;|x) (3)
Median rule

P(w;|x) = median®, P(w;|x) (4)

Expert fusion strategies, including product, min, max, median and vote, and single expert scheme
were compared in [34]. It was also shown that there exists a noise level boundary across which
the relative performance of classifier combination rules changes. For expert fusion techniques
affected by uniform noise, it was found that the minimum and product rules were best for noise
less than a particular threshold. When the noise level was greater than the threshold, the
performance of these two rules degraded and the sum rule became the best one.

Borda count was used in [35] to fuse multiple algorithms for word recognition. A novel Borda
count for fusion based on ranks and confidence was proposed. All experiments were performed
on real-world handwritten words taken from the CEDAR benchmark database. The word
recognition results were the highest (91%) among published results for handwritten words (before
2001). The proposed technique was shown in Figure 5.

DRDC Ottawa CR 2005-052 9
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Figure 5. The Borda count method for handwritten recognition [35].

A method to fuse multiple handwritten word classifiers based on data-dependent densities in a
Choquet fuzzy integral was proposed in [36] that outperforms neural networks, Borda count,
weighted Borda counts, and Sugeno fuzzy integral (about 2% improvement). The Choquet fuzzy
integral of the function h with respect to a fuzzy measure g is defined as follows:

=3 n0) - e o )
where
h(x,) =0, h(x;) <h(x,) <A <h(x,),
and g" :{9({Xivxi+1v/\ A X-j})v i<j
0, otherwise.

When fuzzy integral is applied to classifier fusion, every classifier produces a confidence value
for each class. These confidence values are represented by the function h. The overall confidence
for that class is the fuzzy integral value. The class with the largest integral value can be taken as
the final decision if a crisp decision is needed.

Fingerprint matching algorithms are often based on different representations of the input
fingerprints and hence complement each other. A logistic transform was used in [37] to integrate
the output scores from three different fingerprint matching algorithms. Let 1,(x;) and G;(x;) be
the imposter and genuine distribution of the i'" matcher, i = 1, 2. The logistic function was used to
map the output scores of these two matching algorithms into a single score. The integration
scheme is shown in Figure 6. An experimental result is given in Figure 7.
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Figure 6. Integration of two fingerprint matching algorithms using the logistic transform
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Figure 7. ROC curves of integration of algorithms A and B

A logistic transform method similar to [37] was proposed in [38] to fuse optimal and capacitive
sensors for fingerprint verification. The logistic transformation function is defined as
1

S= :
1+exp[—(w, + W, Sy + W,S,)]

(6)
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The ROC curves of the fusion methods are shown in Figure 8. The performance of the fusion
method is better than the performance of the single classifiers.

10" & .
— - Fusion by Logistic-FD |4
- o, —— Optical |
e T ---- Fugion by Mean
= A
"\
-
L. LT
- - -\.l"\--\.
'\.“- T I-\-
1'1.
] -
E 10F N
L
5, 1'
[
- _I '_:
L,
AI
'-.I1 1
l
1 Lt
1D 1 | el
10’ 10’ 10" 10°

FAR

Figure 8. ROC curves of the optical sensor and two fusion methods

A multi-channel approach to fingerprint identification was proposed in [39]. This method was
tested on 4000 images in the NIST4 database. A two-stage classifier method is proposed. This
method uses K-nearest neighbor classifiers in the first stage and a set of neural network classifiers
in the second stage to classify a feature vector into one of the five classes. The classification
accuracy was improved from 94.8% to 96% for the five-class classification problem.

Highest rank, Borda count, and linear regression were used in [40] for word recognition. The

performance of different methods was compared in Table 2. The recognition rates are improved
greatly by the fusion method.
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Table 2. Performance comparison of character classifiers

Cormect Rate ('4) at Top ¥ Choices

Model Classifien(s) | 2 i 4 5 1
PBC 9.3 #7.8 912 9LE 943 9746
PHC A5.3 913 LA 947 954 917
PN B5.8 919 939 49 057 079
BB( 79.1 B7.5 on.7 92.4 93,9 g97.1
BNC B4.3 908 933 946 954 917
B2N B5.4 91.7 939 9l 957 910

Logistic Regression _
PBC, PNC B854 92.2 94.5 957 96.7 98.5
FHL, FPIN Wi, 5 Wi Yay WhM Ui E YH.b

1

2

3 BBC, BNC 853 918 4.1 953 96.1 98,3

4 BBC, B2N Ba.0 2.3 04,5 957 96.4 98.4

5 PRLC, BRC 813 HDR w7 Q4.5 V5K DR

fi PNC, BNC 86,7 926 9.6 95.6 96.2 98.4

7 P2ZN, BIN B6.9 EAR 95.0 959 96,5 98.5
PRC, BBC,

¥ PNC. BNC BE.1 o3iE 5.7 Q6.6 a7.2 Q3K
FBC, BC,

G PIN. BIN LER G941 957 6.7 97.4 98.9

3.3 Decision-Level

Very few published papers have been found for decision-level biometric fusion based on
dependent sources. An optimal Neyman-Pearson rule [59] was used to combine multiple
fingerprint matching algorithms at the decision-level. Experimental results conducted on a large
fingerprint database (with about 2700 fingerprints) showed that the average matching
performance increased by about 3%. They further showed that a combination of multiple
impressions and multiple fingers improved the verification performance by more than 4% and
5%, respectively.

This method estimates the Parzen window density function based on n observations given by

1 Q 1 1 S }
exp| — X-X.) 2 (X-X. . 7
nh¢ E (zﬁ)d/2|2|1/2 p{ 2h2( J) ( J) (7)

P(X) =

Then the likelihood ratio L =P(X d‘WO)/ P(X d‘wl) is used to make the final decision for a two-

class problem: Decide D, (person is an imposter) for high values of L; Decide D, (person is
genuine) for low values of L.
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3.4 Multi-Level integrated fusion

A few papers were published to discuss multi-level integrated sensor fusion. Multi-level fusion
was utilized in [74] for target discrimination, while it was used in [75] to gradually update the
performance of identity verification systems. A distributed data fusion structure was proposed in
[76] for autonomous systems, while [77] used a two-level belief function model to detect anti-
personnel mines. A multi-level data fusion for intelligent navigation of telerobot was discussed in
[78].
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4. Information Fusion for Independent Sources

4.1 Raw data-level

Raw data-level fusion is not suitable for multi-modal biometric fusion since the raw
measurements from different biometrics such as face and fingerprint cannot be combined to form
a new measurement.

4.2 Feature-Level

4.2.1 Fusion at the feature extraction level

Compared with the score level fusion, concatenated feature schemes are less popular. Only a few
papers were published about information fusion in the feature extraction level. A concatenated
feature vector and Parzen classifier were used in [42] to fuse fingerprint and iris for improved
identity verification. A new feature vector x =(X,, X,, X;) was formulated based on the feature
vectors x, (fingerprint), X, (iris), and X, (iris color). The classification rates of the fusion

method are compared with single classifiers in Figure 9.

AT T S S Sl Py T e
£ = g
—& liig cobdi

; I fgerprind
2 15 3 LT 1

Figure 9. Comparison of fusion method and single classifiers

In [43], a concatenated feature scheme was proposed on fusing speech and face for person
verification. The experimental results showed that for high SNRs, correct classification rates of
the fusion methods were higher than that of the individual classifiers. However, for low SNRs, the
correct classification rates of the fusion methods were worse than the best individual classifier.
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4.2.2 Classifier fusion level

Independent sources based classifier fusion techniques can be classified as follows:
¢ Rule based algorithms:
0 Majority voting [51, 52, 53]
0 Aggregation rules: sum [50], minimum, maximum, averaging (simple averaging,
weighted averaging [49, 52], Borda count [53], Mixed group ranks (MGR) [55]
e Statistical decision based algorithms:
o0 Probabilistic fusion [52]
0 Bayesian estimation [50, 52, 53]
o Dempster-Shafer evidential reasoning [52, 57]
o0 Adaptive decision [52]
¢ Information based algorithms:
o Behavior-knowledge space (BKS) [52]
o Combination by fuzzy integral [53]
0 Fuzzy sets and possibility theory [53]
e Learning-based fusion:
0 SVM, Feedforward neural network, MLP, RBF [50, 54]
e Others:
o Combination by Zimmermann’s compensatory operator [53]
o Score transformation
0 Reduced multivariate polynomial model for multimodal biometrics and
classification fusion, [49, 56]

Face and speech was combined in [44] for person identification. The classifiers used include
SVM, Bayesian classifier, decision tree, and MLP. Bayesian method is used to fuse the multiple
classifiers. The ROC curves of the Bayesian fusion and single modalities are compared in Figure
10. The performance of identity verification is improved greatly by Bayesian fusion.
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Figure 11. ROC curves of fusion, face, and fingerprint
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Bayesian statistics fusion was used in [45] for multi-modal person authentication. HyperBF
networks were used in [46] to fuse audio and video features for person identification. Faces and
fingerprints were integrated in [47] for person identification. Statistical estimation method was
used for fusion. The ROCs of the fusion method, face, and fingerprint are shown in Figure 11. For
low acceptance rates, the performance of the fusion method is improved effectively than face-only
based and fingerprint-only based methods.

A multi-modal biometric system was introduced in [48], which integrates face recognition,
fingerprint verification, and speaker verification for person identification. This system takes
advantage of the capabilities of each individual biometrics. It can be used to overcome some of
the limitations of a single biometrics. Preliminary experimental results demonstrate that the
identity established by such an integrated system is much more reliable than the identity
established by a single face recognition system, fingerprint verification system, or speaker
verification system.

A reduced multivariate polynomial model for classifier fusion was proposed in [49]. This method
overcomes the shortcomings related to complexity of conventional multivariate polynomial model
for high-dimensional problems. The authors applied the new model to fuse fingerprint and voice
data for person identification. The second-order (RM2) and third-order (RM3) multivariate
polynomial models are compared with unimodal biometric systems in Figure 12. The
identification performance can be improved greatly by the fusion methods for low acceptance rate
cases.

SVM and sum rule for fusion of fingerprint and signature were proposed in [50]. The output
scores of single classifiers are used as the input of the SVM network. The output of the SVM is
the final decision score. Before testing, the SVM network must be trained by some training data
sets.
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Figure 14. ROC curves of the SVM method

Reference [52] proposed decision templates for multiple classifier fusion, and compared it with
C1l: MAJ, majority voting. C2: NB, Naive Bayesian; BKS, Behavior knowledge space method.
CC1: MAX, maximum aggregation rule; MIN, minimum aggregation rule; AVR, average
aggregation rule; PRO, product aggregation rule. CC2: PPR, probabilistic product; FI, fuzzy
integral. Cl12: DS, Dempster-Shafer, LDC, Linear discriminant classifier on the intermediate-
output space; QDC, Quadratic discriminant classifier; LOG, logistic classifier; FSH, Fisher linear
classifier. DT: decision templates with different models. The comparison is shown in Table 8 in
[52].

Eleven classifier fusion methods were compared in [53]. The comparison included majority rule,
averaging, Borda count, Bayesian combination, weighted averaging, combination by fuzzy
integral, combination by fuzzy integral with data-dependent densities, combination by weighted
averaging with data-dependent weights, combination by the BADD defuzzification strategy,
combination by Zimmermann’s compensatory operator and optimizing the fuzzy measure.

Hyperbolic function network, forward neural network, and SVM were used in [54] for classifier
fusion of fingerprint and face. They treated the problem of combining fingerprint and speech
biometrics decisions as a classifier fusion problem. The output scores of individual classifiers are
used as the input of the neural networks, and the output scores of the NN are the final decision
scores. The different NN fusion methods can improve the identification performance effectively
as shown in Figure 15. The reduced multivariate polynomial model is also used in [56] for fusion
of fingerprint and speaker.

A mixed group rank (MGR) method for classifier fusion was proposed in [55]. A unifying
framework was proposed in this paper for combination rules of rank-based classifiers. Borda
count, logistic regression, and highest rank combination are just special cases of this framework.
MGR improves the correct classification rates on all tested data sets as shown in Figure 16.
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4.3 Decision-Level

Decision-level fusion can be considered as a pattern classification problem such as biometrics
fusion and target recognition. The independent sources based decision-level fusion schemes
include:

e Rule based:
0 Majority voting [72], AND/OR and PROD/SUM rules [61, 73]
e Machine learning and neural network [58, 73]:
0 Expert [65], FFNN, SVM, MLP [60], fuzzy set [68], particle swarm [70, 71]
e Classifier based:
o Linear classifier, Quadratic classifier, K-NN based classifiers, decision trees [62,
64, 66]
e Statistical decision theory [58, 67]:
0 Maximum a posterior, maximum likelihood, minmax, Bayesian [68, 70, 71],
Dempster-Shafer (DS) evidence theory [68]
e Clustering for decision level fusion [69]:
0 Fuzzy k-means, fuzzy vector quantization, median radial basis function
Others:
0 Logistic regression [58].

SVM used in [60] for decision-level multi-modal biometric fusion. Face, fingerprint and signature
were used as the three biometric signals. Fusion of face, fingerprint, and signature was considered
as a pattern classification problem in this paper, which was implemented through SVM. The SVM
classification problem can be changed into a quadratic programming problem as shown in the
following equation

|
Minimize %"\N”2 +CY ¢
i=1
with Vi (W, D(X;) > +b)>1-¢&;, i=1A,I. (8)
& 20, i=1A,l
The classification scores of unimodal biometrics are input into the SVM network, and the outputs
of the SVM network are the final fused score. A training data set is first formulated and used to
train the SVM network. The testing data set is then used to test the performance of the SVM
fusion method. The ROC curves of fusing different sets of biometrics by SVM are shown in

Figure 17. When the false acceptance rate is lower than 20%, the fused results are consistently
better than that of the unimodal biometrics techniques.
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Figure 17. ROC curves of SVM based multimodal biometric fusion

Voting was used in [61] to increase the decision reliability. In majority voting, a consensus on the
decision is reached by having a majority of the classifiers declaring the same decision. Decision-
level fusion was considered as a classifier problem in [62]. It used k-NN, decision trees, and
logistic regression in a multi-modal identification problem. An adaptive model was proposed for
person identification by combining speech and image information [63]. The flowchart of the
integration process is shown in Figure 18. The performance of the integration method is compared
with face recognition model and speck recognition model. The average recognition rate of the
integration method is about 91.6% while the recognition rates for the voice and face models are
about 85% and 79.29%, respectively.

Contribution Contribufion

from Image from Speaker

Recognition Recognition

O 2
Pre-processing of Pre-processing o
this contribution this contribution
| [
Decision Making
based on

Statistical
Specialization

Final Classification
Result

Figure 18. Flowchart of the integration process [63]
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Table 3. Performance of the speaker recognition, face recognition and integration models

Speaker Face
Person | recogmition | recognition Integration

model model Model

[”'-I:I I:I'l il (%)

A 90 75 90)

B 30 R0 9()

. T Hha B

D 85 a0 95

E 90 80 05

I 85 85 Q)

(] 95 el [ O]
Average 83 79.29 O1.43

MLP was used in [64] to implement decision fusion using face, voice, and signature. The
classification scores of three classifiers for face, voice, and signature, are respectively used as the
input of the MLP neural network, and the outputs of the MLP are the fused decision scores.
Before testing, the MLP network must be trained by some training data sets. Without fusion, the
recognition rates for voice, face, and signature are 89%, 99.5%, and 93%, respectively. The
recognition rate with fusion is 100%.

Speech and face were fused in [65] by expert systems. SVM and vote rules were used for expert
fusion. The authors investigated the behavior knowledge space and decision templates methods of
classifier fusion in the context of multi-modal personal identity verification. The two fusion rules
have been compared to simple combination rules, namely sum and vote, which do not require any
training. Through extensive experiments on the XM2VTS database, they found that all these four
combination methods yielded performance improvement. But no strong evidence had been found
to support the hypothesis that trainable fusion strategies could offer better performance than
simple rules.

Both global and local decisions for person identification based on multivariate polynomial model
was exploited in [67]. The general multivariate polynomial model can be expressed as

K
g(a, X) =D ;X" X2 A X" 9
i=1

The computation complexity of the model represented in (9) is very high for high dimensional
data sets. So a reduced multivariate polynomial model was proposed for multi-biometric fusion.
This new model was defined as
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Experiments showed that the fusion methods can improve the performance of person
identification effectively (as shown in Figure 19).
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Figure 19. ROC curves of the fusion methods

An overview of different decision level fusion techniques including Bayesian estimation, DS, and
fuzzy sets was given in [68]. Clustering was used in [69] for multi-modal decision fusion. Person
authentication results coming from several modalities are combined by using fuzzy k-means
(FKM), fuzzy vector quantization (FVQ), and median radial basis function (MRBF) network.
Simulations showed that MRBF had better performance. Both [70] and [71] proposed a particle
swarm optimization method to search for the best Bayesian decision rule which was used for
fusing face, voice, and hand. The flowchart of this method is shown in Figure 20.
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Figure 20. Flowchart of particle swarm optimization and Bayesian fusion

Face and ECG were fused in [72] for person identification. Mono-modal biometric identification
systems exhibit performance that may not be adequate for many security applications. Face and
fingerprint modalities dominate the biometric verification / identification field. However, both
face and fingerprint can be compromised using counterfeit credentials. Previous research has
demonstrated the use of the electrocardiogram (ECG) as a novel biometric. This paper explored
the fusion of a traditional face recognition technique with ECG. System performance with multi-
modality fusion can be superior to reliance on a single biometric trait.

A multi-modal approach for speaker verification was described in [73]. The system consists of
two classifiers, one using visual features and the other using acoustic features. A lip tracker is
used to extract visual information from the speaking face which provides shape and intensity
features. They used a weighted summation method to integrate the scores of multiple classifiers.
The performance of the integrated system outperformed each sub-system and reduced the false
acceptance rate of the acoustic sub-system from 2.3% to 0.5%.
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5. Theoretical Analysis for Decision Level Fusion

Decision level fusion of independent sources is considered here. For instance, two independent
sources are face and voice. Fusion scheme using these two sources is denoted by A. Verification
system based only on face is denoted by A, while on voice by A,. If A, provides 95% correct

classification rate (CCR) and A, provides only 80% CCR individually, then it is interesting to

find if A can provide CCR higher than 95%, if so, what is any condition or what kind of algorithm
can reach this confidence level. If T is an algorithm, then the task is to find T"which acts on
independent sources so that the output is maximized. This can be written as

['=maxT (A, A,). (11)

At first, we give two important performance indices in biometrics authentication system. The first
is false acceptance rate denoted FAR hereafter which means wrongly identifying an imposter to
be an enrollee. The other index is false rejection rate denoted by FRR which means wrongly
identifying an enrollee as an imposter.

FAR(t) = P(Wy|wp) = [ & P(X|Wo)dX =1—[ ¢ p(X|wp)dX , (12)
FRR(t) = P(Wo|w,) = [ &, p(X|w,)dX (13)

where w, denotes the genuine user while w,denotes the imposter. R, and R, are two exclusive

set in the real axis. Both FAR and FRR are desirable to be as low as possible in authentication
system. In some systems, a low value for FAR is emphasized. Such systems include bank
authentication system, military access control unit, etc. For any biometrics authentication system,
whatever classifier takes, there exists a great risk of error. From the viewpoint of Bayesian

decision theory, this is represented by the following equations for a two class problem,
E(t)=C, x FRR(t) + C, x FAR(t) , (14)
E.(t)=C!xFRR'(t;) +C. x FAR'(t,), fori=1,A ,N (15)
where, N is the total sensor number, C, denotes the loss function pertinent to the false rejection,

and C, denotes the loss function for the false acceptance. For simplicity, we assume that
C,=ClandC, =C|.
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5.1 Using AND rule

First we analyze the performance of fusing two biometric signals. In this case, the relationships of
FAR and FRR between two individual classifiers and the integrated classifier are represented by
the following formulas, respectively,

FAR(t) = FAR(t,) x FAR(t,) (16)

FRR(t) = FRR*(t,) + FRR?(t,) — FRR(t,) x FRR?(t,). (17)

Remark 1 Using an example to explain (16) and (17) clearly, we assume that
FAR' =0.01and FAR? =0.05. If there are 10000 imposters presented to B, then according to

FAR' there will be 100 imposters passed by B,. Because of the AND rule, only five imposters of

100 imposters can pass B, by FAR?. Thus the false acceptance rate of the integrated system is
calculated by

Number of falseaccept 5
Number of imposter 10000

=0.0005
which can be calculated from (16) as FAR(t) =0.01*0.05=0.0005.

In a similar way, we assume that FRR* =100/1100 = 0.091and FRR? =50/1000 =0.05. Then it
follows by the AND rule that if 1100 genuine users present, as a result there are 950 users passed
by the integrated system which gives the false rejection rate

Number of false rejections 1100 — 950
Number of genuine 1100

FRR =0.136.

It is calculated by (17), i.e., FRR(t) = 0.091+ 0.05 — 0.091x 0.05 = 0.136.

Lemma 1 If using AND rule on the independent sources, then for fixed operating point of B, , the

integrated system can improve the performance over the individual classifiers under the following
condition in the sense of the total error.

(1-k,FAR(t,)) < FRR'(t) <k, (1 - FAR'(t,)) (18)

where
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C. 1- FAR%(t

(= L2 PARLL) (19)
C, FRR(t,)
C. FAR%(t

yea ARG (20)
C, 1- FRR2(t,)

However, the integrated system will increases FRR while decreases the FAR.

Proof: It is enough to prove thatE(t)<E;(t;). This leads to the following equations by
substituting (16) and (17) into E(t),

C,FRR?(t,)(1- FRR'(t,)) <C,FAR'(t,)(1 - FAR?(t,)), (21)
C,FRR'(t,)(1- FRR?(t,)) < C,FAR?(t,)(1 - FAR'(t,)). (22)

From (21) and (22), it can be easily seen that to get improved performance, a proper relationship
should be developed between the operating points of two systems. In fact, at some operating
points, (21) and (22) will not hold, which indicates that the performance cannot be improved for
the AND rule based fusion.

If the classifier B, operates at some fixed (FAR?(t,), FAR?(t,)) we can derive conditions for
B, from (21) and (22). That is,

1-k,FAR'(t,) < FRR'(t,) <k, (1 - FAR'(t,)). (23)

From (16), it is straightforward that FAR(t) < FAR'(t,) and FAR(t) < FAR?(t,) . This means the

integrated system decreases FAR. But from (17), FRR(t) > FRR'(t,)and FRR(t) > FRR?(t,)
hold. Thus, the FRR increases.

Equations (16) and (17) can be easily generalized to the cased with more than two biometrics. For
N = 3, we have,

FAR(t) = FAR'(t,) x FRR?(t,) x FRR®(t;), (24)
FRR(t) = FRR'(t,) + FRR?(t,) + FRR®(t,)

—(FRR'(t,) x FRR?(t,) + FRR(t,) x FRR®(t,) + FRR?(t,) x FRR®(t,)).  (25)
+ FRR'(t,) x FRR?(t,) x FRR?(t;)
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5.2 Using OR rule

For the OR rule, similar to the AND rule, we can easily derive the following relationships of FAR
and FRR between the individual classifiers and the integrated classifier.

FRR(t) = FRR'(t,) x FRR?(t,), (26)
FAR(t) = FAR'(t,) + FAR?(t,) — FAR'(t,) x FAR?(t,). (27)
Therefore, without any further proof, we can state the following conclusion similar to Lemma 1.

Lemma2 If using OR rule on the independent sources, then for fixed operating point of B, , the

integrated system can improve the performance over the individual classifiers under the following
condition in the sense of total error.

k,(1— FAR'(t,)) < FRR'(t,) < (1 - k, FAR'(t,)) . (28)
However, the integrated system will increases FAR while decreases the FRR.

Equations (26) and (27) can be generalized for the cases with more biometrics. For N = 3, we
have

FRR(t) = FRR'(t,) x FRR?(t,) x FRR®(t;), (29)

FAR(t) = FAR'(t,) + FAR?(t,) + FAR®(t,)
— (FARY(t,) x FAR?(t,) + FAR(t,) x FAR®(t;) + FAR?(t,) x FAR(t,)).  (30)
+ FAR'(t,) x FAR?(t,) x FAR®(t;)

5.3 Using majority voting rule

Assume that there are N independent sources. For the i" source, an individual classifier B, exists

+1

with false accept rate and false rejection rate {FAR'(ti), FRR' (ti)}. If at least classifiers

wrongly accept an imposter simultaneously, then by the majority voting rule, the integrated
system will accept the imposter. Since each individual classifier is independent, the joint
probability of the classifiers is represented by
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P A L ry) =[FAR ()] - FARY (1) [ " [FAR? (4,)|* L - FAR? (1)

31
<A x[FARM (ty )™ [L- FAR™ (t) [ ™. .

The probability of at least N +1

classifiers wrongly identifying an imposter is then calculated by

FAR(t) = > P(r, A 1y
n+A +ry>(N+1)/2

f] (32)

[FAR )] - FAR! (1) [ " [FAR? (t,) " .- FAR? (1)
WA (N4 12 <A x[FARM (t)]" - FARY (t)[ ™.

For N = 3, we have,

FAR(t) = FAR'(t,)FAR?(t,) + FAR?(t,)FAR®(t,) — 2FAR' (t,) FAR?(t, ) FAR®(t,)
= FAR(t,)FAR? (t,)(1 - FAR®(t,)) + FAR™(t,)(1 - FAR?(t,))FAR®(t;) (33)
+(L— FARY(t,))FAR?(t,)FAR® (t;) + FAR' (t,)FAR? (t,) FAR®(t,).

Similarly, for N = 3, we have

FRR(t) = FRR*(t,)FRR?(t,) + FRR?(t,)FRR®(t,) — 2FRR*(t,)FRR? (t,)FRR®(ts)
= FRR(t,)FRR?(t,)(1 - FRR®(t,)) + FRR*(t,)(L— FRR?(t,))FRR?(t) (34)
+ (- FRR'(t,))FRR?(t,)FRR®(t;) + FAR' (t,)FAR? (t, ) FAR®(t,).

If the integrated system FAR(t) < FAR'(t,) , then we have
FAR'(t,)FAR?(t,) + FAR?(t,)FAR®(t;) — 2FAR'(t,)FAR?(t,)FAR®(t,) < FAR'(t,). (35)
The following equation can be derived from (35),

FAR?(t,)
+ (L FAR?(t,)(1- 2FAR®(t,) ) FAR®(t,)

FAR'(t,) > . (36)

For FAR(t) < FAR?(t,), we have
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FAR'(t,)

2
FART(L)= 1+(L- FARY(t,)(1 - 2FAR® (t,) )/ FAR® (t;) 37
For FAR(t) < FAR®(t,),
) FAR'(t,)
FART )= 17 [L- FAR(t,)(1— 2FAR?(t,) ) FAR(t,) (39

If the FRR of the integrated system is smaller than that of the individual classifier, the

following conditions should be satisfied.

For FRR(t) < FRR'(t,),

1 FRR?(t,)
PR =10 [L- FRR2(t,)(L— 2FRR3(t,) ) FRR3(t,) (39)
For FRR(t) < FRR?(t,), we have
2 FRR(t,)
FRRO)2 7 (L FRRY(t,)(L- 2FRR®(t,) ) FRR3(t,) (40)
For FRR(t) < FRR®(t,),
3 FRR'(t,)
FRROM)= 0 [L- FRRY(t,)(1- 2FRR?(t,) ) FRR2(t,) (1)
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5.4 Soft decision level fusion

For simplicity, we discuss integration of two biometric systems denoted by V¥, and¥,,
respectively. The integrated system is denoted by ¥ . The outputs by individual systems ¥, and
W, are called scores, which stand for the probability of claimant to be a genuine or an imposter.

Then for any fusion strategies, an error is expressed as (14) and (15). If we assume
thatE, (t;) <E,(t,) <A <E\(ty), then it is easily known it is sufficient to prove that

E(t) <E,(t,) . For a two-sensor fusion, if Bayesian rule is chosen, then this means that

Decide w,,if (X, X,)eR

: : (42)
Decide w,, otherwise

whereR:{(Xl, X2)|Cr P(Xy, X,[We) =C, p(Xy, X2|w1)}. Since ¥, and P, are independent, we
have

P(Xy, X2|Wo)= p1(X1|Wo)p2(X2|Wo)v
P(Xy, X2|Wo)= pl(X1|WO)p2(X2|WO)' (43)
Then

FAR(t) =1—jR0 (X, X,|wo)dX,dX,

:1_,[,% pl(X1|Wo)dX1IR0 pz(X2|Wo)dX2 (44)
=1-(1- FAR(t,))L - FAR?(t,)).

It can be easily seen from (44) that FAR(t) > FAR'(t,) and FAR(t) > FAR?(t,). Thus the two-
sensor configuration cannot improve the false acceptance rate by the Bayesian decision rule.

From the definition of the false rejection rate and with the help of the independence of the
individual classifiers, we have
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FRR(t) = [, P(X1. X,|w;)dX,dX,
:IRO pl(x1|Wl)dxlIR0 pz(X2|W1)dX2 (49)
= FRR*(t,)FRR?(t,).
From (45), it is obvious that FRR(t) < FRR*(t,) and FRR(t) > FRR?(t,). Thus the false rejection
rate of the integrated system is reduced compared to individual sub-classifiers.
The exact way as to how the integrated system performs better in terms of the smaller total error

is described in [81]. The Bayesian decision rule is adopted to prove that the error is minimized.
That is, assume that

C, p(Xy, X2|W0) S

> (46)
C, p(xl,X2|W1)
That is
C, pl(X1|Wo)p2(X2|Wo) S (47)
C. pl(X1|W1)p2(X2|W1)
which is equivalent to
C, pz(X2|Wo) S pl(X1|Wo) (48)

C. p2(X2|W1) - pl(X1|W1) .

It was claimed in [81] that from the Bayesian rule, the total error will be smaller than the other
rules. This claim needs further theoretical proof.
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6. Simulation Results

6.1 AND rule

The first experiment shows the performance of the AND rule for fusing two biometrics. Figure
21(a) compares the fused result with that of the individual biometrics. In Figure 21(b), region with
fusion threshold “1” represents the region in which performance of the AND rule based fusion is
better than all individual classifiers. The region with “-1” represents the area where the fused
result is worse than the best individual biometrics. FRR and FAR vary from 0.05 (N = 0) to 0.0 (N
= 30). We can observe that the fused result is better than all individual biometrics only in some
regions for the AND rule for fusing two biometrics.

fusion e

."biome_@rics1

0] = B bi'gme_l_r_ics 2

FAR+FRR

FRR:0.05%/N2 0o

FAR:D.057IN1

(a)

Fusion Threshold

FRR:0.057N2 v FAR:0.08%/N1

(b)

Figure 21. AND rule for fusing two biometrics
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The second experiment shows the performance of the AND rule for fusing three biometrics.
Figure 22(a) compares the fused result with that of the individual biometrics. In Figure 22(b),
region with fusion threshold “1” represents the region in which performance of the AND rule
based fusion is better than all individual classifiers. The region with “-1” represents the area
where the fused result is worse than the best individual biometrics. The FRR and FAR of three
biometrics were changed as follows: FAR1: [0, 0.05]; FRR1: [0, 0.05]; FAR2: [0, 0.04]; FRR2:
[0, 0.04]; FARS3: [0, 0.03]; FRR3: [0, 0.03]. Even in this case, we can notice that the fused result
is better than all the three individual biometrics only in some areas.

fusion

012 hinmietrics 1

01| _bio?rmet'ri'c'éaé
& o8 | SN biopetics 3
% 006 |

FRR: maxFRRI/M2 FAR: maxFARTNT (a)

i
Y i L A s
b.‘.'b"‘v--‘-"'-.-u‘.!

iy L iy
. T L

30

Fusion Threshold
=

10

5 FAR: maxFARTIMN
FRR: maxFRR* /M2 0

(b)

Figure 22. AND rule for fusing three biometrics
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6.2 OR rule

The third experiment shows the performance of the OR rule for fusing two biometric signals.
Figure 23(a) compares the fused result with that of the individual biometrics. In Figure 23(b),
region with fusion threshold “1” represents the region in which performance of the OR rule based
fusion is better than all individual classifiers. The region with “-1” represents the area where the
fused result is worse than the best individual biometrics. FRR and FAR vary from 0.05 (N = 0) to
0.0 (N = 30). We can observe that the fused result is better than all individual biometrics only in
some regions for the OR rule for fusing two biometrics.

biometgcs 2

04 | biometiics 1

FAR+FRR

FRR:0.05%/NZ FAR:D.05%/N1 (a)

Fusion Threshold

FRR:0.05%/M2 0o

FAR:D.05%/N1

(b)

Figure 23. OR rule for fusing two biometrics
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The fourth experiment shows the performance of the OR rule for fusing three biometric signals.
FRRs and FARs of the three biometrics were changed as follows: FARL: [0, 0.05]; FRR1: [0,
0.05]; FAR2: [0, 0.04]; FRR2: [0, 0.04]; FARS3: [0, 0.03]; FRR3: [0, 0.03]. We can see that the
fused result is better than all individual biometrics only in some areas for the OR rule with three
biometrics.

fusion

AT
. hiogretiics 3 ..lb_i_o_met-rh;:'s'] 47 W

0.12 %
77
0.1+ St er el 5
: <7 7
g O 4»’0 :' é" ;"l
o ST S £ (Tl 7
TR o o o S S A T T T
T 006 e e o oA R o P T P s
e e S 0y A0y A s Y ene s et
e A T T A T I o om0
e o o o S T A T T T T A o P D
g R S S T P K B Il T P P PRSI IS
gy Py iy S s W T
0.02 - R o T o T Rl o Pt P s
e S O a0 Yy e e Set
RO et Gy Uy s s Vg T e
o S 2 A P ol ok o P R
S e ety iy ey iy e te %s®,
38> WWW
SR RS,
- : W'm‘p
75 2

FRR: maxFRRIMZ 0 o FAR: raxE AR

(@)

Fusion Threshold

FRR: maxFRR%N2 0 o FAR: raxFARTM

(b)

Figure 24. OR rule for fusing three biometrics
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[0, 0.05]; FRR1: [0, 0.05]; FAR2: [0, 0.04]; FRR2: [0, 0.04]; FARS3: [0, 0.03]; FRR3: [0, 0.03].
The comparison results are shown in Fig. 25. It is apparent from the figure that the fused result is

better than all individual biometrics over the entire region. On the other hand, the AND and OR

biometric signals. The FRRs and FARs of the three biometrics were changed as follows: FARL:
based fusion were better over only a portion of this entire region.

The fifth experiment shows the performance of the Majority Voting Rule for fusing three

6.3 Majority voting rule

biometrics 3

FAR: maxFART/M

FRR: maxFRR"I/MN2

(a)

FAR: maxFARTIMT

FRR: maxFRR7I/NZ

(b)

Figure 25. Majority Voting rule for fusing three biometrics
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6.4 Soft decision-level fusion

The sixth experiment shows the FRR and FAR of the Bayesian soft decision-level fusion of two
biometrics. Figure 26(a) shows that the FRR of the integrated system is reduced compared to the
individual classifiers while the FAR of the integrated system is increased as shown in Figure
26(b).

(@)

= a (b)

Figure 26. Bayesian soft decision-level fusion of two biometrics
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7. Conclusion

This report reviewed the basic structure for information fusion including raw data level fusion,
feature level fusion (feature concatenation and classifier fusion), decision level fusion, and multi-
level integrated fusion for dependent and independent sources. The raw data level fusion is
mainly applied to the fields of multi-sensor fusion in the literature for target-tracking, navigation,
and image fusion. Feature level and decision level fusions are more popular for unimodal
biometric fusion (dependent sources) and some are applied to multi-modal biometric system
(independent sources). Different techniques for biometric fusion at these levels were reviewed
and briefly explained in this report.

In the latter part of this report, some preliminary performance analyses on fusion of independent
sources were presented. It was shown that under certain conditions, fusion of independent sources
at the decision level can in fact improve the performance from the total error point of view.
Simple rules such as AND, OR and majority rules were employed. Both theoretical and simulated
results were obtained. It was also shown that for fusing two biometric traits the FAR and FRR
cannot be simultaneously decreased. Although it is desirable to decrease both FAR and FRR, this
might not be a big problem since for many applications, either FAR or FRR is of particular
emphasis.
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